
Implementing Chaos Engineering
& Continuous Compliance for
Financial Services

Authors:

Ian Tivey Brett Aukburg Paul Jones

Jim Oulton Ming Zheng

November 2019

Implementing Chaos Engineering & Continuous Compliance for Financial Services Implementing Chaos Engineering & Continuous Compliance for Financial Services1 2

Contents

Introduction02

A Roadmap for Implementation09

03 Why is the Simian Army Important to
Financial Institutions?

12 Organisational Model -
Who Should be Involved?

04 Introducing the Simian Army

13 Build vs Buy?

07 Continuous Compliance

05 Chaos Engineering

14 Conclusion

Introduction

This paper explains why the concepts introduced
by the Simian Army are important to any
financial institution adopting cloud services.
It provides an overview of those concepts –
specifically chaos engineering and continuous
compliance – along with a more detailed
explanation of relevant tools and guidance on
how to implement them, both from a practical
perspective and in terms of a suggested
organisational model.

Netflix clearly faces requirements (in terms
of scale and service quality) that would dwarf
those posed by most financial applications. But
financial institutions have other unique factors
to consider - specifically much more stringent
policies and regulations governing access
controls, information security and availability
(for example MAS 644 specifies a maximum total
downtime of 4-hours in a 12-month period for
all critical systems operated by banks).

The Simian Army was originally developed by
Netflix as a set of tools to ensure that its video
streaming service was always available to global
customers without any service degradation (while
ensuring compliance with all policies relating to
security, conformity and cost). That goal may
seem relatively straight forward. However, given
the scale of its operations, it is anything but.
To frame the challenge, consider some of the
following statistics:

¹https://s22.q4cdn.com/959853165/files/doc_financials/quarterly_reports/2019/q2/Q2-
19-Shareholder-Letter-FINAL.pdf

²https://www.netflixinvestor.com/ir-overview/profile/default.aspx

³https://news.softpedia.com/news/netfilx-users-spend-1-billion-hours-per-week-
 watching-movies-514989.shtml

⁴https://fortune.com/2018/10/02/netflix-consumes-15-percent-of-global-internet-
 bandwidth/

• Netflix services approximately 150 million
paying accounts1 across 190 countries2

• It streams more than a billion hours of video
content every week3

• It is said to consume approximately 15% of
the world’s internet bandwidth4

Implementing Chaos Engineering & Continuous Compliance for Financial Services Implementing Chaos Engineering & Continuous Compliance for Financial Services3 4

Public cloud adoption by the financial services
industry has lagged behind other sectors.
Financial services firms are heavily regulated and
subject to more stringent requirements relating
to data privacy and security.

Applicable regulations, to name a few, include
Dodd-Frank, FFIEC, PCI DSS, GLBA, SOX, USA
Patriot Act, MAS TRM, MAS 644, HKMA TM-G
and GDPR. Additionally, high profile data leaks
have tempered some of the appetite for hosting
critical workloads and sensitive data in the cloud,
emphasising the importance of controls and
continuous compliance.

Why is the Simian Army Important
to Financial Institutions?

1) Availability

Public cloud services can experience a higher rate
of component failure than traditional on-premise
dedicated infrastructure. It is therefore vital that
applications developed for the cloud are built
to fail. Resilience needs to be architected into
software. This core requirement has triggered
several corresponding trends in software design,
including adoption of microservices, a move from
stateful to stateless architectures and a tendency
to decouple data from applications.

Similarly, when it comes to service management,
the ease with which cloud services can be
provisioned enables applications to be re-built
more easily and at regular intervals - ensuring
system entropy (another potential cause of
availability issues) can be re-set.

2) Security

When it comes to information security, as
well as identity and access management, the
financial industry is subject to much more
exacting standards than most other verticals.
Although many financial institutions have grown
comfortable with the use of Infrastructure as a
Service (IaaS) by implementing an Infrastructure
as Code (IAC) approach to define and enforce
minimum security standards, the adoption of
Platform as a Service (PaaS) has introduced
greater complexity and new challenges.

The need to lock down all potential attack
surfaces in an environment that has primarily
been architected to be internet-based, open and

multi-tenant requires continuous monitoring
to ensure all security policies are properly
implemented and do not change.

3) Cost

Cloud economics can be compelling when using
appropriate software architectures but it requires
good hygiene. Making resources easier to procure
can lead to sprawl, so organisations will need to
continuously monitor services to ensure they
are making use of everything they procure.
Equally, cloud resources are most cost effective
when software is architected appropriately,
with modern architectures helping to reduce
reliance on dedicated resources and ensure
firms only pay for the CPU cycles necessary to
supportapplication processes.

4) Conformity

The move towards Agile & DevOps development
methodologies has evolved in tandem with the
adoption of cloud. These approaches encapsulate
a crucial benefit that financial services are trying
to unlock - enabling software development teams
to innovate faster. However, as resources become
easier to provision and application teams take on
more responsibility for their own destiny, new
risks need to be managed.

As more responsibility shifts to the application
teams, it is vital that those teams are continuously
monitored to ensure they conform with all
relevant IT policies.

Operating in a cloud paradigm has some
fundamental differences to traditional modes
of managing IT infrastructure and software.
Cloud supports the creation, modification, and
destruction of resources with orders of magnitude
greater speed than traditional systems. Cloud
environments generally expect relatively high
rates of component failures because they are
built on large quantities of inexpensive,
commodity components.

The growing use of public cloud services in the
financial services industry therefore requires
a rethink of some key aspects of application
development, service management and support:

Introducing the Simian Army
Tools like the Simian Army were designed to help organisations adapt to the cloud and minimise risks
associated with software defined environments. They do this in the following ways:

1) Teaching people

Simian Army helps to keep IT professionals
on their toes. Whether that means regularly
injecting some element of chaos (pseudo-random
abnormal events and failures) into the system or
actively handling compliance with policies and
security controls - it prepares an organisation
to perform at its best when working in software
defined environments. Key roles that need to be
involved include:

• Developers are trained by ensuring their
code is designed to failover in any given
circumstance, whether that involves the
failure of an individual instance, a data centre
or an entire region.

• Operators are trained by having to deal with
frequently injected nuisance-level chaos
and being better able to set appropriate
thresholds for what constitutes an incident.

• BCP/DR teams are trained by being able
to simulate and respond to more serious
incidents.

• Compliance and security personnel are
trained by having to “codify” their rules and
controls to enable pre-emptive actions at the
speed of software.

• Procurement professionals and budget
holders are trained by having to set, monitor
and enforcerules for resource consumption.

2) Training systems

The key aim of chaos engineering is to ensure
applications are ready to handle the higher
frequency of component failures in the cloud. By
injecting chaos at every stage in the application
lifecycle – from development and testing through
to production – systems should be accustomed
to deal with such failures as a matter of routine.
Failure can, and should, be simulated at various
levels. While the original Chaos monkey
simulated the loss of one or more instance,
chaos engineering evolved to simulate broader
disaster-level events such as the loss of an
availability zone or region. Equally, the evolution
of microservices architectures has required chaos
engineering to simulate failure at a more granular
level. This can help identify combinations of small
individual faults that lead to cascading failures
with critical implications on complex systems
made up of many inter-dependent microservices.

3) Monitoring and overlaying
controls

The immediacy of service provision offered by the
cloud requires more automated controls to ensure
policies are adhered to (in terms of security,
cost and conformity). Continuous compliance
is a discipline that ensures cloud environments
are always monitored and controlled to ensure
they are compliant with relevant policies, remain
secure and operate efficiently in terms of resource
consumption. This includes overlaying both active
and passive measures of enforcement - ensuring
non-compliant conditions are prevented when
possible, immediately disabled if not preventable,
or immediately alerted upon whenever
appropriate.

Implementing Chaos Engineering & Continuous Compliance for Financial Services Implementing Chaos Engineering & Continuous Compliance for Financial Services5 6

The Simian Army was developed as a set of
individual monkeys, each of which serve a
distinct function. We would typically group those
monkeys into two broad categories – those
designed to support chaos engineering principles,
and those charged with ensuring continuous
compliance with relevant IT policies (addressing
security, cost and conformity).

Chaos Monkey is a tool that randomly disables
or disrupts resources to make sure an application
can survive common types of failure without
customer impact. When resource-level actions
are allowed, this could include running processes
with memory leaks, erratic CPU consumption,
and intermittent network disruption.

Chaos Engineering

More commonly for finance industry use cases,
actions are limited to CSP-level. APIs, either
directly from the CSP or from an abstraction
layer, are leveraged to disable resources/
instances and test the resiliency of the
application’s architecture. For example, leverage
Azure’s APIs, we can test an application’s network
resilience by detaching/attaching virtual networks
(vNet). Cloud-ready applications are usually
deployed across several distributed groups (aka
clusters) rather than a single machine. When
we choose which resources/instances to disable,
we need to be careful. When we target those
machines, we need to query their meta-data to
make sure we don’t disable all nodes in the same
cluster or else the application will be disabled
without achieving the goal of the test.

Chaos Gorilla and Chaos Kong

When Netflix developed the Simian Army, one of
the company’s underlying design philosophies
was to have every software service replicated and
able to operate in any one of three availability
zones, with the same philosophy applied to its
Cassandra clusters for content storage.

Chaos monkey was designed to take down
individual instances to test failover capabilities
within a zone. However, to simulate broader
failures, Netflix created Chaos Gorilla to take
down an entire availability zone and Chaos Kong
to bring down a region.

These tools are designed to simulate failures on
such a scale that they lie more in the sphere of
disaster recovery (DR) and business continuity
planning (BCP). That means they are more likely
to be triggered in a controlled manner, more akin
to fire drills than the regular cadence of chaos
monkey activities. As such, the personnel and
organisational model of this type of chaos is likely
to require more foresight into when drills ought
to be scheduled to ensure minimal disruption to
clients.

⁵https://medium.com/netflix-techblog/
 fit-failure-injection-testing-35d8e2a9bb2

Failure Injection Testing (FIT)

While Chaos Gorilla and Kong ramped up the
level of chaos to simulate more widescale failures,
Failure Injection Testing (FIT) was developed to
trigger more granular failures – breaking things
in realistic ways, while limiting their impact. This
includes application and data level anomalies,
such as injecting malformed messages or slowing
the response time of systems or examining how
a system functions from the perspective of an
individual user under different scenarios. In one
example, Netflix was able to use FIT to confine
failure experiments to specific test accounts,
ensuring production systems could be tested
(end-toend) but without any potential fallout on
paying subscribers.⁵

Chaos Automation Platform
(ChAP)

Whilst FIT was designed to enable more granular
failure scenarios, in order to understand the
resilience of an overall system it may be
necessary to scale out those granular failure
scenarios, given that the loss or degradation of
certain service instances may have repercussions
on the broader system. To do this, Netflix
developed its Chaos Automation Platform (ChAP).
ChAP enables multiple FIT experiments to run
concurrently – helping to analyse the impact
of many smaller failures at the same time. It
also allows FIT experiments to run at a regular
cadence to ensure test results are regularly
updated.

Lineage Driven Fault Injection

Lineage-Driven Fault Injection (LDFI) is a
technique that looks to identify combinations
of smaller injected faults that can escalate and
trigger cascading failures in broader systems.
LDFI works by first looking at what constitutes
success – identifying all paths and processes
required for a system to behave as intended. This
provides a list of candidates into which to inject
faults. The technique is particularly relevant to
large, distributed systems, where dependencies
between services are not easy to model. By
injecting different combinations of faults,
operators can seek to identify potential triggers,
which in themselves may seem innocuous but
have the potential to seem innocuous but have
the potential to result in broader system issues.

Implementing Chaos Engineering & Continuous Compliance for Financial Services Implementing Chaos Engineering & Continuous Compliance for Financial Services7 8

While chaos engineering principally focuses on
ensuring cloud systems are highly available,
continuous compliance tools have evolved to help
address other key aspects of application design
and service management that require a rethink in
the cloud – namely, security, cost and conformity.
Original members of the Simian Army in this
category include Security Monkey, Conformity
Monkey, Doctor Monkey and Janitor Monkey.

These monkeys all follow a similar general
pattern. They pull resource information from the

Continuous Compliance

Conformity Monkey (since
incorporated into Spinnaker)

Conformity Monkey finds resources that do
not adhere to best-practices and takes action.
This component focuses on enforcing a set of
compliance rules set by a compliance team. For
example:

Virtual machines need to belong to an auto-
scaling group

• At least two machines in each group

• All resources/instances need to be tagged
properly

• Certain data cannot be in the public cloud for
more than N days

The cloud provider’s policies can enforce some
rules for us. So, we verify that those policies are
in place. We can define all those rules in a semi-
structured data format, such as JSON or YAML.
We query resources/ instances in the public cloud
frequently by using a scheduler and comparing
retrieved information with the appropriate rules.

Although originally developed as a standalone
set of tools, Conformity Monkey functionality has
since been rolled into open source continuous
delivery platform Spinnaker (Chaos Monkey
is also integrated with Spinnaker, although
continues to be available as a standalone service).
Netflix open sourced Spinnaker in 2015 and since
then other leading technology firms, including

Google and Microsoft, have joined the community
and contributed to the initiative.

The goal of Spinnaker is to automate software
deployment to support a much higher cadence
of code releases. That means automating parts of
the release pipeline with tools to bake, deploy and
test new code releases, detect bugs and provide
an opportunity to fix them, roll back changes and
minimise the impact on the broader system.on
the broader system.

Security Monkey

Security Monkey is an extension of Conformity
Monkey. It finds security violations or
vulnerabilities. For the finance industry, security
plays perhaps the most important role when
building an application. Small security flaws can
be expensive to fix, and the reputational damage
may be irreparable. It is critical to continually
check that public cloud security features are in
place. Example rules could include:

• All virtual machines need to only open ports
approved by the security team

• All virtual networks should be connected to
the company’s on-premises network using a
VPN gateway

• All instances/resources should not have
public IP assigned by the cloud provider; all
data at rest in storages need to be encrypted
by the company’s key

cloud and evaluate it with a predefined set of
rules. The monkey then takes an action based on
the results of their evaluation. Actions generally
fall into one of the following types: notify,
sequester, shutdown, or destroy. The monkeys
are typically not used to correct the configuration
of resources which violate one or more rules –
the intention is to enforce good behaviour by
system developers, rather than correct issues on
their behalf. Prioritisation rules are leveraged to
prevent conflicts between monkeys.

Security Monkey rules should be incorporated
early into the software development life cycle
(SDLC) to ensure security requirements are well
thought through, defined and implemented at an
early stage.

Some cloud providers, such as Microsoft Azure,
also provide built-in threat protection tools,
which can detect suspicious user activities, such
as abnormal login locations, brute force attacks,
suspicious authentication failures, etc. Security
Monkey can be used to retrieve and act on those
alerts and send to stakeholders.

Janitor Monkey (now known as
Swabbie)

Janitor Monkey ensures that cloud environments
run free of clutter and waste. It searches for
unused or expired resources and disposes
of them. For this component, we can define
expiration or lifespan rules and apply them to
resources. For example, if Janitor Monkey finds
a virtual machine that is eight days old, and the
maximum lifespan defined for virtual machines
running that application is seven days, we delete
it. Exceeding lifespan is easy to detect. While
identifying idle resources is more challenging, it is
doable. This will vary depending on the CSP and
the service in question. question. Not all resources
will have a ready API that can be queried to detect
whether it is in use.

Recently, Janitor Monkey functionality has been
rolled into a replacement set of tools known as
Swabbie. Swabbie (version 0.1) was first released
in February 2018 and follows the same principles
as Janitor Monkey. It applies a set of user-defined
rules to mark resources for deletion. However,
it also offers some additional steps to ensure
needed resources are not deleted. For example,
once Swabbie has marked and scheduled a
resource for deletion, the owner of that resource
is notified. The resource is then checked one final
time to ensure it still meets the criteria before
finally being deleted. deleted. Swabbie also offers
the ability to opt certain resources out from the
rules to ensure they are never deleted.

Doctor Monkey

Doctor Monkey taps into health checks that
run by default on many resources as well as
monitoring other signs of health (e.g. CPU load,
number of requests, queue depth) to detect
unhealthy instances. We establish thresholds,
upper limits for CPU, hard drive, memory, and
bandwidth usage in Doctor Monkey’s rules. Any
instance that exceeds the limit for a specified
duration is flagged for more in-depth diagnosis.
Key metrics are obtained by querying the
monitoring logs. Constantly checking resource
health is key to improving the availability and
reliability of an application.

The Direction of the Army

Since it is no longer actively maintained by Netflix
(the last version, v2.5.3, was released on the 4th
of January 2017), the Simian Army has largely
been integrated into parallel Netflix-founded
open source project/s Spinnaker and Swabbie.
Integrating key components of the Simian Army
into Spinnaker/Swabbie is emblematic of the
need to embed chaos engineering and continuous
compliance principles into thesoftware
development lifecycle (SDLC).

However, it is important to note that the Simian
Army can be deployed independently for
organisations that are not currently looking to
use Spinnaker, with the Simian Army code base
still available to download via GitHub.

Implementing Chaos Engineering & Continuous Compliance for Financial Services Implementing Chaos Engineering & Continuous Compliance for Financial Services9 10

Because of its importance in preparing developers
and ITSM personnel alike, tools like the Simian
Army ought to be fully embedded into an
organisation’s software development and release
pipeline.

To ensure that applications are “cloud ready”
before they are deployed for production use in
the cloud, it is essential to integrate Simian Army
into every environment (e.g. dev, QA, prod) across
your application delivery pipeline. Surviving and
complying with the Simian Army are part of the
criteria for promotion to the next environment.
This full pipeline integration aligns with the
“shift-left” approach recommended for agile
development and allows developers to iterate and
quickly correct during their earliest phases rather

A Roadmap for Implementation

To support that process, Synechron recommends that organisations first map all
relevant regulatory obligations onto a cloud controls framework. This ensures
a comprehensive set of controls are in place to satisfy the superset of rules and
regulations applicable to the institution.

To ensure that framework is then implemented correctly, each control will have
to be translated into relevant scenarios. We recommend using a behavioural
driven development (BDD) language to express those scenarios. Defining certain
behaviours and corresponding actions accurately, using logical constructs but using
plain English rather than code should help ensure more active participation from
nontechnical functions in the requirement setting process.

Finally, once all scenarios are mapped out, these will need to be translated into
corresponding Simian Army rules to continuously monitor and test that those
controls have been implemented correctly and implemented for each cloud being
integrated.

than discovering architectural design and coding
weaknesses just before or just after production
release.

As an extension of this philosophy, Simian
Army should also be implemented early in an
organisation’s cloud program. Deploying the
Simian Army enforces a strong level of discipline
from the start of every project – helping to
catch and resolve potential flaws with regards
to availability, security, conformity or cost. It is
useful for all technical resources to get used to
both the chaos and the enforcement before the
cloud becomes an area for hosting production
workloads. That is because it is much harder to
retrofit and gets harder with each production
workload deployed without Simian Army in
effect.

Setting Requirements

Financial applications have a much higher bar
when it comes to security and controls than the
original use case envisioned for the Simian Army.

To achieve continuous compliance with those
requirements, it is crucial that institutions can
implement Simian Army tools in a way that
captures all regulatory obligations and maps
them to corresponding policies, controls and
tests.

Adapting Simian Army for
Hybrid Multi-Cloud

Most large financial institutions will typically
have evolved a mix of on-premise private cloud
infrastructure along with integrated services
from multiple CSPs to support a wide variety
of applications. Although the Simian Army
was originally implemented in a single CSP
environment, it should be relatively straight
forward to adapt to a hybrid multi-cloud world.

The benefit of using behavioural driven
development and deploying a common set
of tools like the Simian Army across all cloud
environments is that a core set of behaviours
and rules can serve universally, helping to define
a baseline set of standards that applies to all
environments. It is only the literal execution of
each rule that will be bespoke for each cloud.

Perhaps the single biggest question mark will
be in the way Simian Army tools are deployed
on private clouds, given that many on-premise
private clouds do not operate in the same way as
public cloud services.

Unleashing your Army

Simian Army monkeys can execute actions in the
context of the CSP’s control plane; the context of
the cloud resources themselves; or the context
of the applications. “CSP control plane” activities
are those that an administrator could perform
from a CSP’s web console or via a CSP’s API and
include activities such as like resource creation,
destruction and modifying configuration.
“Resource level” actions are those that an
administrator could perform within the context of
a specific resource type, for example, commands
within a secure shell session to a virtual machine,
the “kubectl” interface of a Kubernetes cluster,
or the CLI of a network device. Actions in the
application context could be simulations of user
activity, injection of malformed messages into
the network, artificially slowing down system
responses, or any number of other application
level issues.

Monkey Rules

As outlined in the section of requirement setting,
it is important that monkey rules form part of a
broader control framework. This helps to ensure
that all rules align to specific policy or regulatory
requirements, ensuring there is limited conflict
between rules in different engines and that the
rules are designed to ensure specific outcomes.

When it comes to writing those rules,
organisations can opt for a number of choices.
As previously detailed, using BDD to define
rule behaviour is an important step as it helps
to ensure that teams think in logical terms and
remain focused on outcomes, in view of different
scenarios. At the very least, we would recommend
using a human readable language (such as JSON
or YAML) to ensure that all members of a cross-
functional team can review and contribute to the
process.

Implementing Chaos Engineering & Continuous Compliance for Financial Services Implementing Chaos Engineering & Continuous Compliance for Financial Services11 12

The following is an example of a Chaos Monkey rule that has been designed using YAML ⁶ .

Now that Chaos Monkey has been integrated with Spinnaker, it is also worth noting that monkey rules
can be configured via a user interface as shown below in Figure 2.

Figure 1 : Example of Chaos Monkey Rule Written in Yaml⁷

Figure 2 : Screenshot of Spinnaker Gui to Configure Chaos Monkey Rules⁸

⁶ YAML is a human-readable data-serialization language. It is commonly used for
 configuration files and in apps where data is being stored or transmitted

⁷https://netflix.github.io/chaosmonkey/Configuring-behavior-via-Spinnaker/

⁸https://netflix.github.io/chaosmonkey/Configuring-behavior-via-Spinnaker/

For more information about setting up and running projects to implement this
successfully, please contact Synechron at info@synechron.com

Tools like the Simian Army need to be
implemented by cross-functional teams given
that they span multiple roles and responsibilities
within an organisation - including application
developers, testing and service management
through to compliance, audit, security and
finance.

We recommend implementing minimum
standards for the rules associated with each
monkey. While application teams should be
permitted to change rules for their application
prior to cloud development, those values cannot
fall below the minimums. Equally, applications
without specific rules inherit a standard set of
rules and values.

Organisational Model -
Who Should be Involved?

To illustrate this approach, consider the following
examples:

• Central cloud teams can be responsible
for setting minimum standards for Chaos
Monkey and Doctor monkey. Application
teams can then choose to increase those
standards if they need to ensure more
stringent levels of availability.

• Compliance and information security teams
set baseline rules for Conformity and Security
Monkeys, again, with individual application
teams able to set more stringent rules if
dealing with sensitive data sets.

• Budget holders can set baseline requirements
for Janitor Monkey. Individual application
teams can configure stricter rules if working
to tighter budgets.

Implementing Chaos Engineering & Continuous Compliance for Financial Services Implementing Chaos Engineering & Continuous Compliance for Financial Services13 14

Breadth in Functionality

The Simian Army can service a broad range of
requirements covering availability, security,
compliance and cost. Commercial solutions
may have more well-developed functionality
in any one of these areas but are unlikely to
offer comparable breadth. A decision to ‘buy’
is therefore likely to require more than one
product, which could result in complications with
integration and additional cost.

Level of Integration Required

Implementing the Simian Army will inevitably
require some integration with existing systems
management tools, particularly for a regulated
organisation. Commercial solutions are likely to
be more difficult to integrate given that access
to the code base will be limited. Alternatives can
include other open source projects such as the
Cloud Custodian initiative or Spinnaker/Swabbie
that are either targeted at financial services use
cases or pre-integrated with continuous delivery
tools, respectively.

Support Model

As with any vendor evaluation, organisations
need to consider the level of support on offer,
including the speed with which partners respond
to change requests, and balance this against
the responsiveness of their own in-house IT
organisations.

Cost

Perhaps the most obvious advantage of opting for
an open source set of tools is that it negates the
need to license commercial software.

Out-of-the-Box Compliance

Many of the commercial solutions addressing
continuous compliance claim to offer out-of-the-
box compliance with certain standards. Most large
financial institutions will need to comply with
multiple standards and regulatory requirements,
therefore most have evolved their own control
framework designed to meet (and in some cases
exceed) the superset of those requirements.
Commercial solutions often therefore require
significant customisation to configure the desired
set of controls. Equally, from the perspective
of conformity, cloud service providers offer a
number of their own tools to help consumers
apply restrict behaviours that contravene
policy such as Azure Policy & Blueprints, AWS
Service Control Policy, Config & RBAC and GCP
Organization Policy.

The Simian Army offers a powerful set of tools to
support any organisation adopting cloud services.
However, any decision to implement such tools
should be benchmarked against comparable
commercial solutions in the market and/or other
open source toolsets.

Build vs Buy?

Figure 3: Sample of Vendors offering Continuous Compliances Solutions

Some key factors to consider when determining
whether to buy, build or integrate an open source
toolset, include:

As part of the DevOps ‘shift left’ philosophy, time
needs to be invested early in the SDLC to ensure
the availability of applications, as well as controls
over security, conformity and cost are all thought
through, implemented accurately and maintained.
In order to manage shifts in responsibility,
organisations need the right set of tools at their
disposal.

Irrespective of whether one decides to license
commercial software, build in-house or integrate
open source tools, there is a clear need to
implement many of the concepts introduced by
the Simian Army.

By introducing chaos engineering principles early
in the SDLC, organisations will be better able to
enforce requirements to ensure the ‘built-to-fail’
mantra is properly implemented.

Equally, continuous compliance is a reaction to
the greater responsibilities taken on by application
teams and the immediacy of service provision
offered in the cloud. Just as automation developed
by CSPs has made resources faster to provision,
automation needs to be introduced to ensure
those resources are provisioned properly, in a way
that conforms with all relevant policies, upholds
security and is not wasteful.

Synechron is an industry leader in cloud control
initiatives and has hands-on experience
specifically implementing Simian Army tools, as
well as broader chaos engineering and continuous
compliance principles using diverse tool sets.
For more information please email us at
info@synechron.com

Conclusion

www.synechron.com

