
A Comprehensive Guide to
Continuous Compliance-as-Code
in the Cloud

Empowering Application Teams in
Heterogenous Cloud Environments

Authors:

Ian Tivey
ian.tivey@Synechron.com

Paul Jones
Paul.Jones@synechron.com

Mark Wong
Mark.Wong@synechron.com

David Sewell
David.Sewell@synechron.com

March 2020

A Comprehensive Guide to Continuous Complianceas-Code in the Cloud A Comprehensive Guide to Continuous Complianceas-Code in the Cloud1 2

Public cloud adoption in
Financial Services is maturing
with several leading
organisations adopting a broad
set of services from multiple
cloud service providers.
To take full advantage of the services on offer,
application developers need direct access to the
cloud provider’s management interfaces, which
challenges the traditional, established lines of
responsibility between infrastructure teams and
application teams.

This blurring of roles is creating anxiety for
the teams responsible for enabling the cloud
(typically the “Cloud Centre of Excellence”) - upon
which the burden of compliance is falling - and
those responsible for governing the cloud - who
are challenged with new operational and SDLC
patterns.

As financial services firms prepare for application
teams to take on additional compliance
responsibilities in this new model, and as the
services underpinning the applications become
more heterogenous in nature, there is a demand
for a more accurate mechanism to describe
how controls should behave in the cloud - both
in a generalised way and in the context of the
individual cloud services and architectures being
implemented.

The shape of the control landscape needs to
evolve to spread responsibilities across multiple
teams, tools, services and third parties. Using
the analogy of an apartment block to model the
different responsibilities inside our organisation,
we present a comprehensive model for managing
compliance “as code” - with traceability from the
canonical sources of compliance requirements

Abstract

Contents

Introduction03

Compliance-as-Code Using Behaviour
Driven Design Specifications

18

04 Revisiting the Shared Responsibility Model

24 Putting it all Together: Compliance-as-Code

07 Breaking Down Responsibilities within the
“Customer Platform”

27 A Practical Compliance-as-Code End-to-End
Example - Enforcement Controls

16 Implementing the Reference Architecture

32 Conclusion

11 Implementing Controls in the
“Customer Platform”

30 Compliance-as-Code for Application Teams

through to the manifestation of those
requirements in the cloud and reporting of the
effificacy of the controls we have in place.

To address the need for a consistent mechanism
for expressing control objectives, we describe our
favoured approach of using Behaviour
Driven Development (BDD) – a way of using
natural language to express complex system
requirements, allowing technical and non-
technical stakeholders to agree how a
system should behave if implemented correctly.

We then address how these objectives can
be automatically and regularly tested as part
of a Continuous Integration and Continuous
Deployment (CICD) pipeline. These tests do
not replace dedicated tools and cloud native
services for monitoring and compliance reporting.
Instead, they provide for a common specification
and reporting layer, giving us transparency,
traceability and confidence that these services
have been configured correctly and are meeting
the desired control outcomes. Continuous testing
also gives us assurance that the CSP has not
made service or platform changes which affect
the compliance and security posture or control
behaviour.

By combining these concepts, we can create
a data model for end-to-end lineage from the
underlying provenance of our controls, to control
objectives, to behavioural specifications and
finally the result of implementation tests and
output of continuous compliance monitoring
tools.

We present a practical example using Cucumber,
a polyglot BDD testing framework, to specify and
test controls of object storage services. The code
for this example can be found on the Synechron
GitHub account at https:// github.com/
Synechron/compliance-as-code-whitepaper

A Comprehensive Guide to Continuous Complianceas-Code in the Cloud A Comprehensive Guide to Continuous Complianceas-Code in the Cloud3 4

Financial services organisations are beginning
to adopt a “polycloud” model – integrating a
heterogenous set of PaaS services from multiple
providers into their IT ecosystem.

The approach of handling cloud provisioning
through a homogenous abstraction layer – whilst
attractive from the perspective of control – has
been proven to hinder the progress of this shift
in strategy, with the abstraction layer unable to
keep pace with the demand for access to new
cloud services or the feature velocity of the cloud
services that have already been integrated.

The emerging approach towards controlling
heterogenous polycloud environments is to
decentralize the implementation of controls.
By combining the controls provided by the CSP
control plane with both a provisioning toolchain
and monitoring tools to detect and handle non-
conformance (an approach commonly referred
to as control “guardrails”) firms are gaining
confidence in their ability to control the
risks of making the native APIs of the CSPs
directly available to application developers.

Given the requirement to embed hundreds of
controls across several service providers - with
traceability to policies and regulations - the only
viable way to manage their deployment and
management is via automation.

With a growing number of implementation teams
and multiple control authors, there is a high risk
of fragmentation, with different interpretations
and implementations of the same set of
requirements. The esult is inconsistent control
outcomes and a greater burden on control owners
and the teams responsible for gating and auditing
the controls landscape.

To derive greater consistency in control outcomes,
pioneering organisations are looking towards best
practices from software engineering to build, test,
deploy, manage and report on the controls that
have been implemented. Tracing the provenance
of controls to their underlying regulatory and
legal requirements is also extremely important
in highly regulated financial services firms.
These firms have a need to provide a structured,
auditable evidence trail - both to avoid audit
activity firedrills and to provide continuous
assurance and transparency across polycloud
infrastructure estates for internal operational
risk teams.

Introduction

Decentralising Controls in
a Polycloud PaaS Model

Towards Automation &
an SDLC for Controls

• How the shared responsibility model is
fragmenting with this shift in strategy

• A reference model for implementing cloud
resources and controls

• Techniques for building and validating the
implementation of controls

• How the reference model can be implemented
in your organization using these techniques

• Infrastructure-as-code: referring to the use
of software engineering practices to deploy
and configure cloud resources

• Compliance-as-code: referring to the use
of software engineering practices for
implementing and validating the efficacy of
controls deployed in the cloud

• Continuous compliance-as-code: referring
to the regular validation of controls

¹https://aws.amazon.com/compliance/shared-responsibility-model

²https://www.fca.org.uk/publication/finalised-guidance/fg16-5.pdf

³https://ithandbook.ffiec.gov/media/274841/ffiec_itbooklet
 outsourcingtechnologyservices.pdf

⁴https://www.occ.gov/news-issuances/bulletins/2013/bulletin-2013-29.html

⁵https://www.mas.gov.sg/-/media/MAS/Regulations-and-Financial-Stability/
 Regulatory-and-Supervisory-Framework/RiskManagement/Outsourcing-
 Guidelines_Jul-2016-revised-on-5-Oct-2018.pdf

In this paper we discuss: Throughout this paper we build on
the following terminology:

For a number of years, the public cloud Shared
Responsibility Model has been the starting
point for discussing the segregation of roles
and responsibilities between the CSP and
the Customer. AWS¹ describes the shared
responsibility model as:

• CSP responsibility - “Security of the Cloud”

• Customer responsibility - “Security in the
Cloud”

Despite the handover of responsibilities to the
cloud provider, financial services cloud-related
regulations make it very clear that a financial
institution cannot abdicate its accountability for
the security and operational resilience of the
overall system and data.

• FCA FG 16/5² - “Firms retain full
accountability for discharging all of their
responsibilities under the regulatory system
and cannot delegate responsibility to the
service provider.”

• FFIEC Outsourcing Technology Services³-
“As with all outsourcing arrangements
FI management can outsource the daily
responsibilities and expertise; however,
they cannot outsource accountability.

• OCC Bulletin 2013-29⁴- “A bank’s use of third
parties does not diminish the responsibility of
its board of directors and senior management
to ensure that the activity is performed in a
safe and sound manner and in compliance
with applicable laws.”

• MAS Outsourcing Guidelines⁵- Institutions
are ultimately responsible and accountable
formaintaining oversight of (Cloud Services)
and managing the attendant risks of adopting
(Cloud Services), as in any other form of
outsourcing arrangements.

Practically, this means high levels of due
diligence need to be undertaken with respect
to the responsibilities outsourced to the service
provider. Financial institutions need to develop
mechanisms to thoroughly evaluate and keep
on top of changes to each of the services without
overly restricting the agility benefits of
adopting services at this level.

Revisiting the Shared
Responsibility Model

Customer Accountability & Provider Responsibility

A Comprehensive Guide to Continuous Complianceas-Code in the Cloud A Comprehensive Guide to Continuous Complianceas-Code in the Cloud5 6

Deconstructing the Shared
Responsibility Model

In this section, we deconstruct the Shared
Responsibility Model, both in order to describe
how control responsibilities become more
distributed and heterogeneous as PaaS services
and additional service providers are onboarded,
and to facilitate the design of an efficient
governance model for adopting public
cloud services.

Customer Platform Controls

Customer Platform Controls are implemented by
the customer at a platform level – the customer
counterpart to the Cloud Native Service Controls.
They are implemented by the customer either
using the tools and services provided natively by
the CSP or by integrating third party, open source
and homegrown tools (often a combination).
These can be implemented monolithically, but
as firms are becoming more PaaS-aware they are
becoming increasingly specific to each service.
As we will discuss later in this paper, financial
services firms need to be prepared for application
teams to take on more responsibility for the
“customer platform” as PaaS services are adopted.

Cloud Provider Controls

Cloud Provider Controls are those which are
relatively similar across the gamut of services
provided by a CSP. Typically, a single periodic
assessment will cover controls at this layer.
Examples are Data Centre controls, HR controls
for CSP staff, Service Management and
Contractual controls.

Application & Data Controls

Application & Data Controls are the controls
implemented specifically for the application - in
application code, application processes and by
manipulation of the data associated with the
application. While many of these will be controls
that application teams also need to deal with
on-premise there are other controls which on-
premise infrastructure and middleware platforms
have historically provided transparently but now
need to be handled by the application itself (high
availability, for example).

Cloud Native Service Controls

Cloud Native Service Controls are the
service-aligned controls for which the CSP
takes responsibility. At a macro level, more
responsibilities are given to the CSP as we
move from IaaS to PaaS and then to SaaS (as

“Financial services firms need to be prepared for application
teams to take on more responsibility for the “customer platform”

as PaaS servicesare adopted.”

Figure 1 : Shared Responsibility Model Figure 2: Typical Controls at Each Layer of the Shared Responsibility Model

illustrated in Figure 1). With such a variety of
PaaS services on offer, there is a huge variation
in the responsibilities assumed by the CSP and
in the maturity of controls across the different
services. It cannot be assumed that controls that
exist for one service be identical, or even exist, for
another - both within a single CSP’s offerings or
across clouds.

A Comprehensive Guide to Continuous Complianceas-Code in the Cloud A Comprehensive Guide to Continuous Complianceas-Code in the Cloud7 8

As we consider how to effectively enable
direct developer access to native CSP APIs
across a large organisation, the Customer

Breaking Down
Responsibilities within the
“Customer Platform”

Customer Platform Reference
Architecture

There are typically multiple contributors to the
Customer Platform across several disciplines
in the organisation. The objectives of a modern
Customer Platform are to:

• Provide as much transparent autonomy as
possible to application teams to manage their
application cloud environment

• Provide guardrails to control the boundaries
of acceptable risk

• Provide benefits of scale through provision
and management of shared and homogenous
foundational services

Using the analogy of an Apartment Block
(see Figure 3 - Reference architecture for the
“Customer Platform”), we can model the different
responsibilities inside of our organisation where:

• “Tenants” are analogous to “application
teams”, responsible for the “furnishings” in
their “apartment”

• “Apartments” have “fixtures and fittings”,
with more stringent security and compliance

• requirements than furnishings. These need to
be managed, or at a minimum signed off, by
qualified experts

• “Resident services” provide scalable services
shared between tenants

• The “building” is the foundation for
integration of any public cloud service
provider

• A “leasing agent” is responsible for managing
the supply and demand of tenancy services
in our fluid public cloud environment

Using this model to improve organisational
understanding, we can make determinations of
which parts of the organisation are responsible
for implementing and deploying any specific
control, and responsible for reporting and
continuous assessment of compliance.

Figure 3: Reference Architecture for the “Customer Platform”

Platform needs to be architected to provide scale benefits
in both the delivery of shared integrated services and
common overlays for managing risks.

A Comprehensive Guide to Continuous Complianceas-Code in the Cloud A Comprehensive Guide to Continuous Complianceas-Code in the Cloud9 10

Building

There are services, like gas mains, that provide
the fundamental building blocks for access to the
cloud. The layout of the billing and accounting
structure, identity management and long-line
network connectivity typically sit in this layer.
To change these services is extremely disruptive
and risky and so should be held to the highest
standards of service management.

Resident Services

Similar to the Building, there are several shared
services which need to be in place to provide core,
highly specialised capabilities from which every
tenant can benefit. Examples in this category
are security log aggregation and analysis, or
the transit networking to provide connectivity
between different tenants. Central engineering
and management of these services provides
scale benefits and typically there is very little
tenant-specific customisation. Like the building,
changing these services is disruptive and risky.

The Apartment Unit

The Apartment Unit is the shell structure into
which tenants can deploy furnishings tailored
to their specific requirements. There are notable
differences between the different cloud service
providers in the concrete manifestation of an
apartment unit. In AWS this is typically an
“Account”, in Azure a “Subscription” or
“Resource Group” and in Google Cloud Platform
a “Project”. There may also be hierarchical
structures in place from which attributes of the
apartment unit are inherited (for which we can
use the analogy of a “floor”).

The aim is to standardize the look and feel of
apartment units (analogous to standard layout
1-, 2- and 3-bed apartments), whilst also making
provisions for edge cases which require more
specialisation (analogous to the Penthouse).

Furnishings

Like tenants in an apartment unit who are
free to choose their furniture and decorations,
application teams have the freedom to choose
services, the configuration of those services and
how they integrate together to optimally support
their application.

We can adopt a model where application teams
can choose to use curated blueprints to deploy
services using tools supported by the cloud
team (think “IKEA furniture”) or build their own
from the ground up using the tools they are
most comfortable with (think “custom walnut
furniture”).

This is not to say that application teams have
free rein to do whatever they like. Strict rules still
apply and, while guardrails can be put in place
and the use of compliance-stamped pre-canned
blueprints encouraged, application teams will
need to take responsibility for the configuration
of resources which they own, obtaining sign-off
from the appropriate compliance teams before
go-live or the release of material
changes and dealing with auditors.

Fixtures & Fittings

In an individual apartment unit, services such as
the plumbing, gas outlets and electrical wiring
are generally fixed in place. Remodeling these
fixtures requires a level of expertise for which,
given the risk of getting these wrong, most
tenants choose to or are mandated to call in an
expert. Regardless of who does the work, in many
cases modifications require sign-off from certified
professionals before being put to use - the risk
of using a badly installed gas stove could be
catastrophic, for example.

Similarly in the cloud, much of the tenant-
specific networking, roles management, audit
logging and policy management require a level
of expertise that most application teams don’t
have embedded into their squads, and the risk

of getting these wrong can result in material
damage. Application teams can, if they wfeel
they have the knowledge, attempt to modify
deployment artifacts for these resources by
raising a pull request against the appropriate
source code repository.

An emerging set of services and automated
compliance tools are helping to enforce
compliance both in- and out-of-band - supporting
the objective of allowing direct developer access
to CSP APIs. Each of the major CSPs have native
offerings and there are several commercial tools
and open source projects which integrate with the
CSP APIs in order to achieve similar goals.
These “guardrails” should be considered part
of the “fixtures and fittings” to ensure that
segregation of duties controls are in place.

These “fixtures and fittings” would usually
be delivered as part of the “apartment unit”
provisioning and any specific tailoring for
application teams (e.g. virtual firewall ports)
 should be applied via code in a manner that
is completely reproducible at any point in the
future.

Lettings Agent

To deliver these architectural features we need
a set of mechanics to handle requests for new
apartment units, modifications to existing units
and destruction of units which are surplus to
requirements. This should be built API-first with
any GUI components built on top of that API.
These services require back-end integrations
with the systems and data sources required for
determining whether the request can be fulfilled
- such as authentication and authorization,
financial management systems, information
about data residency and disposal requirements
and service usage approvals. They may also be
integrated with existing inventory platforms and
other data sources.

For the most part, the aim is to have processes
which prime these systems so that business-as-
usual requests get immediately approved and
fulfilled.

A Comprehensive Guide to Continuous Complianceas-Code in the Cloud A Comprehensive Guide to Continuous Complianceas-Code in the Cloud11 12

Implementing Controls in the
“Customer Platform”

The apartment block abstraction described
previously implies a distribution of roles and
responsibilities across several different teams.
Synechron strongly advocates mandating
the use of Infrastructure-as-Code wherever
possible, controlled via software development
techniques. This not only provides repeatable and
auditable outcomes, but allows the delegation of
operational activities.

For each layer in the reference architecture,
there are three sets of responsibilities we need to
consider:

• Responsible for the code - The build, test,
release and maintenance of the code falls
under this team’s responsibilities. This team
may wholly write the code themselves, be
responsible for reviewing and approving pull
requests from other development teams, or
both.

• Responsible for instigating the execution of
code - The team which kicks off execution of
code to deliver cloud resources. In some cases
this might be via an API call which performs
several control checks before kicking off a
pipeline to deliver the requisite resources.

• Responsible for compliance - The team
responsible for ensuring the code results in
compliant resources, including obtaining
sign-off from the appropriate compliance
teams.

In some cases the same team will be responsible
for two or more of these, in others it will be
different teams.

The table below describes the typical responsible
party for each layer in the stack. “Teams” is used
as a loose definition – the exact organisational
party will depend on the organisational operating
model being followed.

Operational Responsibilities

*”Apartment” and “Fixtures & Fittings” typically delivered together

As most firms aim to “shift-left” in their application
development practices, we should follow a similar
approach to the cloud by introducing controls as
early as practically possible in the development
lifecycle to avoid any last minute surprises when
trying to push configurations out into Production.

Implementing Controls

Figure 4: Implementing Controls Across the Different Layers in the Reference Architecture

In this architectural model, where controls are
federated across different teams, there are two
styles of controls implementation (which should
be used in combination to provide a comprehensive
set of controls across the platform): 1. Control
enforcement 2. Control validation

A Comprehensive Guide to Continuous Complianceas-Code in the Cloud A Comprehensive Guide to Continuous Complianceas-Code in the Cloud13 14

Control Enforcement

There are several different techniques we can
use to enforce compliance in the cloud. A well-
rounded Enterprise adoption program will use all
of these techniques across different parts of the
Customer Platform.

Pre-Built Resources

By only allowing application teams to integrate
with pre-built resources in the cloud, we enforce
compliance by simply not providing options to
configure those resources in a non-compliant
manner. These could either be shared services
or prescriptive resources dedicated to each
application team that are delivered as part of their
“Apartment Units.”

The resources deployed at the “Building”,
“Resident Services” and “Fixtures & Fittings”
layers fall into this category. Typically, we try to
avoid pre-building resources at the “Furnishings”
level (although we may provide mechanisms to
assist application teams in deploying compliant
furnishings).

Preventative Controls

Cloud providers offer services integrated with
their control plane that can be configured to
constrain or prevent certain user actions and
behaviours, with the effect of blocking the non-
compliant configuration of a resource.

Preventative controls provide immediate
feedback to the developer, leaving the developer
fully in control of the resources deployed into
their environment. They are our first line of
defence in meeting the objective of providing
native CSP API access for developers and typically
delivered as part of the “Fixtures & Fittings” in
every apartment unit.

Detective-Corrective Controls

There are various native cloud provider services,
commercial tools and open source projects
which can be configured to periodically scan the
environment or receive triggers when a resource
is created, compare the configuration of resources
against encoded policies and take action to
correct any non-compliant resources - such as
destroying them, quarantining them for human
inspection or just alerting for manual
intervention.

Detective-corrective controls are less desirable
than preventative controls. They can cause
unexpected behaviour with deterministic state
management tools, such as Terraform, which
report successful deployment of resources that
are then mutated or destroyed outside of the
visibility of the developer’s tooling. They still form
a major part of our tooling, however, where is it
not possible to implement preventative controls.

Wrapped Resources

For middleware services which are complex to
build in a compliant manner and which involve
multiple control planes (one example being
the various flavours of Kubernetes service) we
can wrap the multi-stage delivery process in an
API or provide it as a native template in one of
our supported templating languages to assist
development teams in building compliant
furnishings.

We can also provide a common set of tests which
provide a level of assurance that these complex
resources are compliant, which teams can
integrate into their “Furnishings” pipeline.

Control Validation

Use of Infrastructure-as-Code allows us to
adopt best practices from software delivery
by performing code inspections and testing as
part of the delivery pipeline to validate that the
resources which will be delivered
will be compliant.

Code Analysis

When new code is checked-in to our source
repository we can automatically inspect it
against specific requirements and reject the
pull request if any requirements are violated.
We might choose to check for test coverage and
sufficently low numbers of “code smells”, or use
tools which are closely coupled to our modelling
language to define configuration rules. We might
also automatically suggest (with a bot) the most
appropriate reviewer of a pull request based on
the code that is being edited.

Resource Inspection

After we deploy resources, both in our non-
production and production environments, we can
pull the resultant configuration of those resources
via the CSP’s APIs, parse and inspect it for specific
compliance requirements.

Tools such as Open Policy Agent (OPA) can be
used to declare validation logic and inspect the
JSON configurations returned in the CSP API.

Active Resource Deployment

We can test the efficacy of preventative and
detective-corrective controls by attempting to
deploy resources and perform actions which both
violate and comply with our policy boundaries
and make assertions based on the outcome of
those tests. We can do this on a regular basis
to ensure that any changes made by the cloud
provider have not altered the effect of our
guardrails, which would otherwise be opaque.

This type of test is particularly effective at testing
the efficacy of tools which scan the environment
and perform actions on non-compliant resources.

There are different levels of inspection and testing
we can perform to increase our confidence level in
the efficacy of our controls and the compliance of
deployed resources.

Unfortunately there is no “silver bullet” to validate
that our controls are effective: we need to make
tradeoffs when choosing how deep we go, how
frequently we test and much risk we are willing to
take on in the validation of our controls.

As we get into the territory of actively deploying
resources to validate our guardrails, the test
suite can take a long time to execute and, in
some cases, can expose the firm to unacceptable
risk if, for example, noncompliant resources
are successfully deployed to a Production
environment. A complete approach will shift
both “left” and “right” in the SDLC process, being
both integrated into the feedback a developer
receives whilst developing their infrastructure
code but also stressed via active “chaos” testing in
Production environments.

Peer Review

As part of the development workflow, when a pull
request is raised by a developer, it should be peer
reviewed and approved before being merged.
Reviewers/approvers could be developers in the
same development team and/or control partners
in compliance teams.

Fail Fast

Before trying to run potentially time-consuming
integration tests, we can do as much as possible
to fail fast. We can list our test code and
deployment artifacts for hygiene and validity
before we try to execute them. Cloud Providers
provide a JSON schema against which we can
validate that not only is our JSON syntactically
correct, but also semantically correct. There are
also open source⁶ and commercial⁷ tools
which can be used by developers to validate
their code against the guardrails they will face in
deployment.

⁶https://github.com/open-policy-agent/conftest

⁷https://www.hashicorp.com/sentinel/

A Comprehensive Guide to Continuous Complianceas-Code in the Cloud A Comprehensive Guide to Continuous Complianceas-Code in the Cloud15 16

• They address concerns across all control
disciplines - security, sourcing, availability,
continuity, service management and vendor
management

• They acknowledge that the approaches and
best practices differ between traditional IT
and Cloud Computing

• They are phrased in such a way as to avoid
the objective being solved using only one
implementation technique, unless absolutely
necessary

• They are high level and flexible enough to
allow for the different types of service and
service providers encountered as cloud
services are onboarded

• The total number of objectives is manageable
in size. In our experience, 150-200 is a good
number to aim for

Mapping this common control set to the
underlying legal and standards documents is also
an important first step in tracing the provenance
of controls implementations to the underlying
requirements.

While the typical starting point for Cloud Controls
is security, a complete set of controls will cover
the full spectrum of control concerns when
adopting public cloud:

• Availability, Continuity and Resilience
• Contracts and Legal
• Exit Management
• Human Resources
• Operations and Service Management
• Privacy
• Risk Management Practices
• Security
• Vendor Management

In our experience developing Cloud Control
Objectives and implementing cloud controls for
several financial services organisations, we advise
taking the following into account:

• Each objective is traceable to one or more
legal / regulatory requirements and vice
versa, supported by other standards and best
practice documents

Having high quality tests in a shared repository allows
developmentteams to decide on their own tools for managing their

resources, with controls evidence generated by a common set of
trusted tests generating a common set of compliance artifacts.

Having a common controls reference is becoming increasingly
important with the adoption of PaaS services, with control

responsibilities for the Cloud Platform fragmenting across the firm.

Defining Common Control
Objectives
We have long espoused the need8 to invest in a
common set of control objectives which are fit
for purpose for Cloud. Where there are multiple
regulatory bodies and industry standards to
which we must adhere, a common control
set provides a reference against which cloud
services can be sourced, onboarded, configured

Implementing the
Reference Architecture

Rather than having a single team take on the
responsibility for creating and maintaining them,
an “innersource” model, where blueprint artifacts
are managed as an open source project but for
internal use, allows any member of the firm to
take on responsibility for maintaining compliant
resource definitions by raising pull requests
against the codebase.

Accountability can be retained by security and
compliance teams by having them be part of the
governance process, responding to and approving
pull requests and making decisions about when
changes are merged into the master branch.

Running such an inner-source model requires
that all blueprint definitions in the repository
have comprehensive automated tests, which we
will discuss in more detail later in this paper, and
that application teams leveraging these templates
are also able to run regression tests against their
own environment. In a sense, the tests are more
important than the deployment artifacts – having
high quality tests in a shared repository allows
development teams to decide on their own tools
for managing their resources, with controls
evidence generated by a common set of trusted
tests generating a common set of compliance
artifacts.

Penetration and Vulnerability
Testing
Once resource and configuration artifacts are
deployed we can perform penetration tests to
determine the efficacy of network controls. We
can also attempt to exploit known platform-
level attack vectors, such as attempting to hijack
identities via the CSP’s metadata service.

Chaos Engineering
Chaos Engineering started as a mechanism for
actively testing the efficacy of high availability
architectures by pseudo-randomly destroying
resources and logically taking large parts of the
system offline, even in Production environments.
It now covers a broader set of activities, such
as injecting malformed messages onto the
wire, regularly attempting to exploit known
vulnerabilities and deploying rogue resources and
software into the environment to mimic a bad
actor.

Testing of control implementations in non-
production environments is likely to be “cleaner”
than in the production environment, so for
the highest level of confidence we should aim
to perform tests which actively violate the
controls in Production – either continuously, or
periodically.

Democratising Compliance

The blueprint approach is a technique that can be
used to facilitate compliance and consistency in
the way “furniture”-level resources are deployed.
In this model, pre-approved templates and
workflow patterns can be encoded and held in a
common code repository.

⁸https://www.synechron.com/insights/
 whitepapers/cloud-controls-for- financial-
 services/

Having a common controls reference is becoming increasingly
important with the adoption of PaaS services, with control

responsibilities for the Cloud Platform fragmenting across the firm.

Having a common controls reference is becoming increasingly
important with the adoption of PaaS services, with control

responsibilities for the Cloud Platform fragmenting across the firm.

Having a common controls reference is becoming increasingly
important with the adoption of PaaS services, with control

responsibilities for the Cloud Platform fragmenting across the firm.

and integrated. These common controls may
form a dedicated set of objectives for the cloud
or be folded into the firm’s existing, general
IT frameworks. Having a common controls
reference is becoming increasingly important
with the adoption of PaaS services, with
control responsibilities for the Cloud Platform
fragmenting across the firm.

A Comprehensive Guide to Continuous Complianceas-Code in the Cloud A Comprehensive Guide to Continuous Complianceas-Code in the Cloud17 18

With our common control objectives in place,
mapped back to their various source artifacts, we
can then begin to map our objectives forward to
concrete implementations of controls, providing
end-toend traceability from the originating
compliance requirements to the details of how
the different parties and teams involved in the
delivery of applications and data in the public
cloud are going about their responsibilities.

Through our work, we have come to the
realization that, as firms bring on multiple cloud
providers, adopt heterogenous PaaS services
and federate out the responsibility for delivering
different controls, there is a layer of precision
missing between the high level, unstructured
objective statement (which is intentionally
broad and open to interpretation) and the
concrete implementation.

The result is inconsistency in how control
objectives are interpreted (even within the
same teams), challenges in communication
between implementation, compliance and audit
teams, and overly rigid diktat on how individual
controls must be implemented. This often
manifests itself in multiple spreadsheets with
overlapping, conflicting requirements written
in their own unstructured or structured ways.

Creating Traceable Control
Implementations

Compliance programs need a conventional way
for control owners to structure and maintain
detailed control requirements for the teams
responsible for implementing and integrating
any individual service or part of the platform - a
common reference for continuous validation and
attestation reporting, with the flexibility to choose
and modify how any particular requirement is
implemented as the underlying cloud
service offerings change.

Our favoured technique for articulating these
types of requirements is Behaviour Driven
Development (BDD), a technique borrowed from
software engineering.

Compliance-as-Code Using
Behaviour Driven Design
Specifications

From the BDD specification we build code
artifacts, implementing resources which behave
according to the specification and tests which
attest that the deployment artifacts exhibit the
specified behaviours.

As we will see in the following example, when
writing the specifications it is important to
have sympathy for how tests can be logically
implemented. The most effective approach to
BDD involves an iterative process between those
writing the specifications and those creating the
deployment artifacts and the control tests to
ensure the specifications result in achievable and
robust test coverage.

Each BDD specification forms a “contract” between all of the
stakeholders involved in compliance activities and forms the basis

for generating auditable evidence.

Behaviour Driven Development (BDD) is a
technique for formalising a shared understanding
(between technical and non-technical staff) of
how a system should behave.

It is largely facilitated through the use of a
domain-specific language (DSL) using natural
language constructs. There are a handful of
popular BDD DSLs, but in this paper we will focus
on Gherkin which is the format for the Cucumber
framework9.

Each BDD specification forms a “contract”
between all of the stakeholders involved in
compliance activities and forms the basis for
generating auditable evidence. There is, naturally,
effort involved in gaining consensus and sign-
off by stakeholders on the specifications so,
while the implementation artifacts and testing
of the controls linked to the requirements in
the BDD specifications may change often,
the specifications themselves should remain
relatively static. Investing up-front in high quality
specifications is important to avoid later re-work
and churn in re-gaining consensus.

Figure 5 shows the different code artifacts in the
compliance-as-code library.

We favour BDD for compliance-as-code because it
is particularly effective in complex scenarios with
multiple stakeholders. Focusing on behaviours
avoids straying into implementation details in our
requirements, allowing us to make specifications
portable across cloud providers, services and the
concrete control implementations.

⁹https://cucumber.io

A Comprehensive Guide to Continuous Complianceas-Code in the Cloud A Comprehensive Guide to Continuous Complianceas-Code in the Cloud19 20

BDD Basics

Let us describe the fundamental BDD building
blocks: Features, Scenarios and Scenario Outlines:
Features

Features

A BDD specification starts with a Feature. This is
typically something a Product Owner or a Control
Owner might write in the form of a User Story.

Scenarios & Scenario Outlines

The behaviours which support the Feature are
defined by a series of Scenarios. Each Scenario is
expressed using a set of key words followed by
natural language. The main key words are:

• “Given” – this is intended to describe the state
of the system at the beginning of the scenario
(the “scene”)

• “When” – describes the event or action to
trigger the scenario

• “Then” – the observable desired response to
the When triggers

Any of these keys words can have multiple
statements under them, using the keywords “And”
and “But.”

It’s important to note that the key words
themselves don’t apply any particular behaviour
to the test implementation, they are there in order
to provide structure and convention to the Feature
definition.

To avoid repetition, when we want to define
identical Scenarios with a range of possible states,
triggers and outcomes, we can use a Scenario
Outline. In the case of a Scenario Outline we
define variables in our “Given”/“When”/“Then”
statements and provide a data table which
defines values for each of the variables
under separate tests.

There are also other Gherkin keywords for
describing more complex features – Background,
Rule. The full specification can be found at https://
cucumber.io/docs/gherkin/reference/

We give an example of Feature and associated
Scenarios below.

The user story for the feature describes the need for our specification and high level goal:

Feature

Figure 5 : Code Artifacts in the Compliance-As-Code library (Azure Example)

The following example is a Scenario that describes
the behaviours a user should experience when
controls restricting network traffic to HTTPS are
applied to storage buckets. The goal was to write
the specification in such a way as to be portable
across different Cloud Providers.

BDD Example - Object Storage
Encryption in Flight

As we came to implementing the deployment
artifacts and the control validation tests for this
scenario we went through a couple of iterations,
which we will step through in this example to
demonstrate the importance of understanding the
underlying cloud implementation when writing
the BDD specifications.

Initially, we used a Scenario Outline to describe
the different HTTP/HTTPS on/off permutations,
the expected result under each permutation

Scenario 1 – A Preventative Control

and the semantics of the error response (not the
actual error) that we’d expect to receive from the
cloud provider.

Whilst this is a trivial example, it demonstrates
that BDD brings a level of precision to our control
definitions that our control objectives do not (nor
should be designed to do), yet the requirements
remain quite readable by anyone vaguely familiar
with object storage. A typical control objective
linked to this requirement would be, “Encrypt All
Sensitive Information in Transit”10.

In writing this example, we had an Azure Storage
Account implementation in mind. When we
wanted to write tests for the same specification in
AWS, we realized that the specification required
some changes to be portable across the two
clouds.

10CIS Controls Version 7

A Comprehensive Guide to Continuous Complianceas-Code in the Cloud A Comprehensive Guide to Continuous Complianceas-Code in the Cloud21 22

When writing BDD Scenarios, there are some key principles to keep in mind:

BDD Principles

Don’t include implementation details
in Scenarios

BDD forms a contract across the firm and if the
BDD specification requires significant re-work,
should a provider modify their approach or
release something better, then there is a lot of
work involved in reestablishing the contract.

Example: rather than “Given an Azure Policy is in
place…”, which is a very specific implementation
of the control, use “Given security controls are
in place…”, which gives flexibility in how those
controls are implemented.

Focus on semantics, not specifics

Example: error messages from CSPs and services
will vary and may change over time. If error
messages in your BDD Feature are semantically
correct, they can be mapped to concrete CSP
error messages in tests implementations.

Create a tag namespace for annotating
Scenarios within a Feature

Examples: “@csp.gcp” indicates a scenario which
applies to Google Cloud Platform. “@service.aks”
indicates a scenario which applies to Azure
Kubernetes Service. “@preventative” indicates a
scenario that describes a preventative behavior.
With these tags in place, not only do the Features
have additional metadata, but we can choose to
only execute logical tests against, for example,
GCP or AKS, to suit our needs.

Be vivid

This one comes from the Gherkin reference site11,
in reference to the Background keyword. We find
it useful across the entire feature specification -
use colourful names, and try to tell a story. The
human brain keeps track of stories much better
than it keeps track of names like “User A”, “User
B”, “Site 1”, and so on.

Test Implementation

With our BDD Features agreed, we can begin
implementing Cucumber tests. Our example tests
are written in Go using the official Cucumber BDD
framework for Golang, “Godog” from Data Dog12.

It is beyond the scope of this whitepaper to
detail how tests for above Scenario can be
implemented.

Detailed write-ups on how we have implemented
tests can be found on http://medium.com/
Synechron

The code for our tests can be found on https://
github.com/Synechron/compliance-as-code-
whitepaper

Test Output

The output of our tests aligns to the originating
BDD Feature, showing which steps passed, which
failedand which were skipped.

Test steps might be skipped if a preceding
steps fails, if a Feature is defined but a physical
implementation is not.

Because the test output is machine-readable
JSON, we can choose to visualise it in different
ways. We’ve chosen to use the off-the-shelf
Cucumber HTML Reporter13, which produces
output like that shown in Figure 6.

11https://cucumber.io/docs/gherkin/
 reference/
12https://github.com/cucumber/godog
13https://github.com/gkushang/
 cucumber-html-reporter

Azure has simple options to toggle HTTP and
HTTPS on Storage Accounts and Azure Policy has
the capability to outright prevent the creation of
Storage Accounts which do not meet the policy’s
requirements.

On AWS, AWS Config works by detecting the
creation of non-compliant resources and then
taking action.

We have used “@tags” to annotate each Scenario, indicating that one Scenario is applicable to
preventative controls and the other is applicable to detective controls. These tags can be used in the
implementation of Cucumber tests associated with this scenario.

Scenario 2 – Adding
a Detective Control

Because the two implementations are different –
preventative vs detective - we decided to create a
separate “detective” scenario, written to be
portable across other CSPs and third party tools
which work in detective mode:

A Comprehensive Guide to Continuous Complianceas-Code in the Cloud A Comprehensive Guide to Continuous Complianceas-Code in the Cloud23 24

Figure 6 : Example Test Output Using Cucumber html Reporter

Figure 7: End-to-End Control Traceability

With a library of Common Control Objectives, BDD
specifications, Infrastructure as Code deployment
artifacts and Cucumber tests for the CSPs and
cloud services we have onboarded, we have a
comprehensive model for managing compliance

Let’s look at how all of these artifacts tie together to provide a comprehensive approach towards
Compliance-as-Code.

Putting it all Together:
Compliance-as-Code

“as code” - with traceability from the canonical
sources of compliance requirements through to
the manifestation of those requirements in the
cloud and reporting of the efficacy of the controls
we have in place.

A Comprehensive Guide to Continuous Complianceas-Code in the Cloud A Comprehensive Guide to Continuous Complianceas-Code in the Cloud25 26

With layered controls providing “defence in depth,”
it can be difficult to test specific controls deeper in
the control stack. For example, if IP whitelisting is
blocking access to a resource it will prevent testing
of other controls applied to that resource. In our
CI environment we should aim to test all of the
controls.

Continuous Testing

In the absence of a code release, the CI pipeline
may be periodically kicked off to provide
continuous testing of the efficacy of the controls.
Because the cloud providers are continually
making opaque changes to the platform, this can
provide alerts to changes which would otherwise
go undetected.

Release

When ready, the deployment pipeline releases the
deployment artifacts. As part of the deployment
process we may also run through the full suite of
control validation tests to give us confidence that
any differences between CI and Production haven’t
affected our controls, although some tests may be
omitted for risk reasons (for example, attempting
to open SSH port 22 to the internet on the virtual
firewall).

Once the tests have passed, if we are following a
“blue/green” or “canary” style deployment we can
migrate the Production environment over to the
newly deployed resources and retire the previous
version.

Control Validation (“Smoke”)
Tests

Post-deployment, we can also periodically or
continually perform control validation tests to
ensure entropy hasn’t caused any of the controls
or resources in our environment to become non-
compliant.

Writing Features, Deployment
Artifacts and Tests

Controls Analysts and Developers work
together to curate BDD specifications,
deployment artifacts and control tests in a
development environment. Where appropriate,
the development environment should have
guardrails in place to enforce compliance,
providingearly feedback on the changes required
to the deployment artifacts to meet compliance
requirements, or to highlight the changes
required to the guardrails to facilitate the service
being onboarded.

Incorporating Changes into the
Core Codebase

When changes to BDD specifications, deployment
artifacts and test code are ready, a pull request is
raised against the main code branch (requesting
that new changes are incorporated into the core
codebase). At a minimum, the pull request should
be subject to peer review. In addition it can be
subject to code validation and analysis, as we
described earlier.

Continuous Integration

Both before and after a merge, the proposed
changes will kick off a continuous integration
(CI) pipeline which deploys the artifacts in the
repository and executes the associated control
validation tests. If the tests pass (and our other
hygiene and quality gates are met) then the
code is ready to be merged and, in a Continuous
Delivery model, ready for deployment in the
Production environment.

In our reference architecture (see Figure 4) we
visualized several pipelines for managing different
parts of the Customer Platform.

A Compliance-as-Code
Development Pipeline

Enforcing compliance - via guardrails in the
environment - and implementing validation as
far “left” as possible in the pipeline provides
developers with early feedback for rapidly fixing
issues and ensuring deployment artifacts have
a high probability of being compliant before the
code is released.

Figure 8: Compliance-as-Code Development Pipeline

Extending validation testing of our
implementations as far “right” as possible and
performing increasingly intrusive validation tests
(“chaos engineering”) provides increasing levels of
confidence that our controls are effective.

Moving from left-to-right in Figure 8:

Each of these pipelines can be implemented as a
common set of tasks, shown in Figure 8.

A Comprehensive Guide to Continuous Complianceas-Code in the Cloud A Comprehensive Guide to Continuous Complianceas-Code in the Cloud27 28

In this section we present a practical example
of how enforcement controls can be delivered
as code when delivering “apartment units” to
development teams.

As discussed earlier in this paper, these
enforcement controls form the “fixtures and
fittings” of the apartment, allowing us to meet our

A Practical Compliance-as-Code
End-to-End Example - Enforce-
ment Controls

Figure 9: Enforcement Controls Delivery PIpeline

Continuous Integration

The purpose of the Continuous Integration (CI)
pipeline is to determine the efficacy of the control
implementations in our library, including the
configuration of continuous compliance tools which
monitor the cloud environments and alert for non-
compliance.

Continually running integration tests against the
full library of controls will quickly catch and alert to
any changes affecting the behavior of our control
implementations. Even if the code hasn’t changed,
running the full suite of tests regularly (e.g. daily
or weekly) will capture any behavioural changes
made by the Cloud Service Provider, which would
otherwise be opaque.

There are a couple of strategies to consider when
setting up the CI pipeline – “Isolation” Testing and
“Combination” Testing:

Isolation Testing

The layering of controls implemented around a
specific service to make it fully compliant presents
challenges in testing the full stack of controls
around any particular service. For example, if both
preventative and detective methods are
implemented for the same control it is not possible
to test the detective method if the preventative is
blocking the creation of a non-compliant resource.
IP whitelisting controls may outright block the
creation of resources, regardless of any other
configuration applied.

We need an environment to cleanly and
continually test the individual implementations of
each control in the library in an isolated manner,
giving us confidence that each individual control is
effective.

Structured Controls Library

The “Structured Controls Library” is the library of
BDD specifications. Each specification has a series
of metadata associated with it, such as:

• Lineage: the upstream Cloud Control
Objective(s) implemented by the specification.

• CSPs: to which the specification applies.
Whilst the aim is to write the specifications in
a portable manner, it is not always practical
to do so due to notable differences in the CSP
service architecture.

• Applicable Services: for cases where
specifications are written for specific services.
Typically, this will be due to secondary control
planes, such as a Kubernetes service.

• Network Zone: there are notable differences
in the controls in an Internet-facing zone
which accepts client connections versus virtual
network zones where databases are hosted.

• Data Sensitivity: stronger or weaker controls
for greater or lesser sensitivities of data.

Controls Implementation
Library

The “Controls Implementation Library” is the
collection of Deployment Artifacts and Cucumber
tests for the “apartment” and “fixtures and
fittings”, plus the associated metadata/attributes.
The different types of artifact and testing
strategies that can be found are discussed earlier
in this paper.

The underlying implementation of each control
and associated tests will be specific to each CSP
and their individual service offerings. There will
also be specifics across other dimensions such
as data sensitivity, network zone and system
criticality.

It is beyond the scope of this whitepaper to go into
detail on how this can be achieved.
Please refer to https://medium.com/Synechron
for detailed technical write-ups and https://
github.com/Synechron/compliance-as-code-
whitepaper for code examples.

stated goal of allowing developers to access the
CSPs’ native APIs with appropriate guardrails in
place to manage compliance risks.

Figure 9 shows the architecture of the delivery
pipeline.

A Comprehensive Guide to Continuous Complianceas-Code in the Cloud A Comprehensive Guide to Continuous Complianceas-Code in the Cloud29 30

matching control artifacts to apartment units
include :

• The target CSP
• Whitelisted services
• Network zone
• Data sensitivity
• Control exclusions – i.e. any controls which

should be excluded from this specific
apartment for reasons other than the above

Prior to giving the “apartment” a green light for
application deployment we run through a set
of Cucumber tests to ensure the combination
of controls selected does not result in conflicts
or other issues. Because of the blocking nature
of certain preventative controls, it may not
always be possible to run through the full suite
of controls in Production - particularly where we
have a combination of preventative and detective
techniques in place for similar controls. We need
to be shrewd in selecting the control tests that are
executed for the purpose of validating our
deployments to avoid false positives.

Reporting Framework

The purpose of these Cucumber tests is not to
replace the compliance dashboards provided by
the cloud service providers or third party tools.
Our tests, however, should give us confidence that
the policies being tracked meet the requirements
– if the dashboard indicates everything is green,
then we want to be confident that it isn’t missing
anything non-compliant.

The goal of the reporting for the testing
framework is to generate evidence of which tests
were run and when, which tests have passed or
failed and link the tests back to the originating
control objectives and regulatory requirements.
Where the results of any tests have changed, we
need to be alerted immediately and a response
process put in place to mitigate changes in
compliance posture.

In our example above we have tagged the BDD
feature with the control objectives the feature
is linked to. We write the summary results to
a database, with a hyperlink to the full test
output. This could also be integrated into
existing compliance tools, such as RSA Archer or
ServiceNow.

Combination Testing

As well as testing the individual control
implementations, we also need to ensure that
there are no conflicts when the full stack of
controls across multiple services are combined.
This is a non-trivial exercise to get right with
preventative controls, because of the “blocking”
challenges described above.

With PaaS services issues typically arise around
network controls (e.g. user defined routes, virtual
firewall rules), access management/roles and
encryption and so isolating combinations of these
controls in testing may also reveal issues that
need to be addressed. Issues will usually manifest
themselves in the denial of resource creation (or
generation of alerts), which should otherwise be
allowed.

Controls Delivery

This is the pipeline that delivers the “Apartment
Unit” and “Fixtures and Fittings”.

In our experience, there is rarely a “one size fits
all” set of guardrails that satisfies the needs of all
application teams. In reality, almost every
application team requires a slightly different set
of guardrails according to the services they are
using, the network zone and data classifications.
As a result, a significant percentage of tenants
in the platform require customisation of the
guardrails around their environment.

One way to manage custom requirements is to
handle exceptions in the policy code itself and
deploy the same policy set everywhere. This
makes the process of delivering new “apartment”
units relatively simple, but makes the testing
of each policy and troubleshooting issues
considerably more complex. As new requirements
come in existing policies need to be evaluated and
modified if new customisations are required.

The alternative is to deploy a custom set of much
simpler policies using metadata to automatically
create a custom package of deployment artifacts
and Cucumber tests for the requirements of any
particular “apartment”. Attributes we can use for

Enforce Infrastructure as Code

Enforcing the use of Infrastructure as Code
in any environment where non-public data is
hosted ensures that best practices from software
development can be used to control the provision
of resources in the Cloud.

Restricting the ability to provision or modify
resources in these environments reduces the
ability for any individual to bypass pipeline
controls, which could otherwise result in non-
compliant resources.

Communicate control
requirements using BDD

Using Behaviour Driven Design to communicate
compliance requirements at the ”furnishings”
level gives control owners and auditors comfort
that requirements are well communicated and
understood using a common, easily understood
set of semantics.

Practice Test Driven
Development for Cloud
Resources

The process of writing compliance tests up-front
validates the completeness and effectiveness of
the BDD control requirement features. Often the
process of writing the tests results in changes to
the BDD feature to make the requirements more
robust.

It also forces teams to consider how compliance
could be violated, resulting in a more secure and
stable solution overall.

Cloud Resource Management
Discipline

In the face of often aggressive deadlines for
migrating applications to public cloud, application
teams who maintain discipline in how they
manage their compliance responsibilities around
the cloud resources underpinning their application
will be in a strong position to obtain the necessary
sign-offs for go-live.

We recommend focusing on maintaining
discipline around the following items. While these
may be viewed as unnecessary activities that
might slow a project down, often concerns raised
around the handling of compliance requirements
can derail projects resulting in firedrills and delays
that could otherwise have been avoided.

Compliance-as-Code for
Application Teams

While guardrails can be put in place to put
restrictions around the core capabilities of the
cloud they can only go so far. Each PaaS service
will have it’s own mechanism for implementing
controls, particularly where a secondary control
plane is involved – for example, a managed
Kubernetes service is going to be very different
to a managed Database service. Even within the
same Database service, the different flavours
(PostgresDB, MySQL, MSSQL) have their own
distinct control planes.

As PaaS services are adopted, financial services
firms need to prepare for application teams to
take on more responsibility for the controls in
and around the services being used for their
application platform (i.e. the “furnishings” in their
“apartment”). By approaching cloud resource
management as an extension of existing software
quality control processes, by using the techniques
described in this paper at different stages of SDLC,
application teams should be well set to handle
these additional responsibilities.

A Comprehensive Guide to Continuous Complianceas-Code in the Cloud A Comprehensive Guide to Continuous Complianceas-Code in the Cloud31 32

Cucumber Tests as Guardrails

In this paper we have presented guardrails as
controls which can be implemented in- and
out-of-band using various tools. Cucumber Tests
should also be considered an essential tool for
implementing guardrails in the delivery of an
application team’s “furnishings”.

The teams involved in onboarding a new cloud
service – often a combination of a public cloud
specialist team and the first application teams
using the service – should work together to
define the BDD feature specifications and build
the Cucumber tests. These can then be deployed
in the application team’s pipeline and inside the
“fixtures and fittings” as continuous tests.

Making these tests available in an “inner source”
repository allows subsequent consumers of that
service to leverage and extend this work, even if
the tooling they want to use for provisioning is
different.

Incorporate controls testing
in the “furniture” delivery
pipeline

All of the control points mentioned in previous
sections can and should be incorporated into
the SDLC pipelines used by applications teams
for deploying cloud resources. This includes
Cucumber tests which generate a continual
stream of evidence and ability to “catch” failed
tests in continuous integration environments,
immediately after deployment and periodically
against existing deployments.

Conclusion
the controls required around any application-
specific environments, based on a consistent set
of attributes, generating a continual stream of
auditable evidence along the way.

Our favoured technique for defining and testing
controls is Behaviour Driven Design (BDD),
which uses a structured natural language to
describe the behavior of the system under
specific scenarios. This allows both technical and
non-technical stakeholders to understand how
the system should behave when the different
controls are in place. “Cucumber” is a polyglot
BDD test framework for writing behavioural
tests, integrated into Continuous Integration and
Continuous Deployment (CICD) pipelines to give
us confidence in the effectiveness of controls
across the platform.

Finally, creating a data model for end-to-end
lineage - from the underlying requirements for
our controls, to control objectives, to behavioural
specifications and finally to the capture of
implementation test results and the outputs
of continuous compliance tools - will help in
communicating to internal stakeholders and
regulators how effectively the control
requirements of the organisation are being met.

Meeting compliance requirements across a
heterogenous set of PaaS services from multiple
cloud service providers is a major challenge for
financial services firms. For IaaS the prevailing
approach was to implement controls in a
monolithic abstraction layer through which all
requests were funneled. For PaaS adoption this
approach is no longer viable, with developers
needing access to the cloud service providers’
APIs. This necessitates a more federated approach
towards how the cloud platform is built and
maintained, which we modelled in this whitepaper
using the analogy of an apartment block.
Cloud-native services, 3rd party tools and open
source frameworks are emerging to support this
shifting approach. These tools take advantage of
the information available through cloud providers’
APIs, putting in place preventative and detective
“guardrails” to manage the risk of non-compliant
resources being deployed by the application
team. A typical “polycloud” environment will have
several tools and CSP-native services deployed
in an attempt to deploy guardrails and it is
important that they are all configured to the same
specifications.

Using software development best practices and
mandating the use of infrastructure-as-code
we can continually test the completeness and
efficacy of controls implemented in the cloud
platform. We can also automatically deploy

www.synechron.com

